Optimized Gamma Synchronization Enhances Functional Binding of Fronto-Parietal Cortices in Mathematically Gifted Adolescents during Deductive Reasoning
نویسندگان
چکیده
As enhanced fronto-parietal network has been suggested to support reasoning ability of math-gifted adolescents, the main goal of this EEG source analysis is to investigate the temporal binding of the gamma-band (30-60 Hz) synchronization between frontal and parietal cortices in adolescents with exceptional mathematical ability, including the functional connectivity of gamma neurocognitive network, the temporal dynamics of fronto-parietal network (phase-locking durations and network lability in time domain), and the self-organized criticality of synchronizing oscillation. Compared with the average-ability subjects, the math-gifted adolescents show a highly integrated fronto-parietal network due to distant gamma phase-locking oscillations, which is indicated by lower modularity of the global network topology, more "connector bridges" between the frontal and parietal cortices and less "connector hubs" in the sensorimotor cortex. The time domain analysis finds that, while maintaining more stable phase dynamics of the fronto-parietal coupling, the math-gifted adolescents are characterized by more extensive fronto-parietal connection reconfiguration. The results from sample fitting in the power-law model further find that the phase-locking durations in the math-gifted brain abides by a wider interval of the power-law distribution. This phase-lock distribution mechanism could represent a relatively optimized pattern for the functional binding of frontal-parietal network, which underlies stable fronto-parietal connectivity and increases flexibility of timely network reconfiguration.
منابع مشابه
Mathematically gifted adolescents use more extensive and more bilateral areas of the fronto-parietal network than controls during executive functioning and fluid reasoning tasks
The main goal of this study was to investigate the neural substrates of fluid reasoning and visuospatial working memory in adolescents with precocious mathematical ability. The study population comprised two groups of adolescents: 13 math-gifted adolescents and 14 controls with average mathematical skills. Patterns of activation specific to reasoning tasks in math-gifted subjects were examined ...
متن کاملNeural correlates of superior intelligence: stronger recruitment of posterior parietal cortex.
General intelligence (g) is a common factor in diverse cognitive abilities and a major influence on life outcomes. Neuroimaging studies in adults suggest that the lateral prefrontal and parietal cortices play a crucial role in related cognitive activities including fluid reasoning, the control of attention, and working memory. Here, we investigated the neural bases for intellectual giftedness (...
متن کاملAudience effects on the neural correlates of relational reasoning in adolescence
Adolescents are particularly sensitive to peer influence. This may partly be due to an increased salience of peers during adolescence. We investigated the effect of being observed by a peer on a cognitively challenging task, relational reasoning, which requires the evaluation and integration of multiple mental representations. Relational reasoning tasks engage a fronto-parietal network includin...
متن کاملFronto-Parietal Network Reconfiguration Supports the Development of Reasoning Ability.
The goal of this fMRI study was to examine how well developmental improvements in reasoning ability can be explained by changes in functional connectivity between specific nodes in prefrontal and parietal cortices. To this end, we examined connectivity within the lateral fronto-parietal network (LFPN) and its relation to reasoning ability in 132 children and adolescents aged 6-18 years, 56 of w...
متن کاملMathematically gifted male adolescents activate a unique brain network during mental rotation.
Mental rotation involves the creation and manipulation of internal images, with the later being particularly useful cognitive capacities when applied to high-level mathematical thinking and reasoning. Many neuroimaging studies have demonstrated mental rotation to be mediated primarily by the parietal lobes, particularly on the right side. Here, we use fMRI to show for the first time that when p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2014